关于用户画像那些事,看这一文章就够了

  • 时间:
  • 浏览:1
  • 来源:大发彩神在线计划—大发彩神计划怎么来的

用户特征的提取即用户画像的生产过程,大致可不利于够分为以下几步:

社交网站的用户画像,也会提取用户的社交网络,从中可不利于够发现关扎得密的用户群和在社群中起到意见领袖作用的明星节点。

1.提取用户被委托人填写的资料,比如注册时可能活动中填写的性别资料,那先 数据准确率一般很高。

消费能力指用户的购买力,可能做得足够细致,可不利于够把用户的实际消费水平和在每个类目的心理消费水平区分开,分别建立特征纬度。

数据管理系统

用户画像的含义

当然,对于特定的网站或App,肯定又有特殊关注的用户纬度,就前要把那先 维度做到更加细化,从而能给用户提供更精准的个性化服务和内容。

点评



**应用示例:个性化推荐

**

以电商网站的四种 页面的个性化推荐为例,考虑到特征的可解释性、易扩展和模型的计算性能,很久 线上推荐系统采用LR(逻辑回归)模型训练,这里也以LR模型举例。很久 推荐场景都会用到基于商品的协同过滤,而基于商品协同过滤的核心是另另另两个商品相关性矩阵W,假设有n个商品,这么W很久 另另另两个n n的矩阵,矩阵的元素wij代表商品Ii和Ij之间的相关系数。而根据用户访问和购买商品的行为特征,可不利于够把用户表示成另另另两个n维的特征向量U=[ i1, i2, ..., in ]。于是UW可不利于够看成用户对每个商品的感兴趣程度V=[ v1, v2, ..., vn ],这里v1即是用户对商品I1的感兴趣程度,v1= i1w11 + i2w12 + in*w1n。可能把相关系数w11, w12, ..., w1n 看成要求的变量,这么就可不利于够用LR模型,代入训练集用户的行为向量U,进行求解。另另另两个另另另两个初步的LR模型就训练出来了,效果和基于商品的协同过滤类事于。

精确有效的用户画像,依赖于从大量的数据中提取正确的特征,这前要另另另两个强大的数据管理系统作为支撑。网易大数据产品体系中含高的一站式大数据开发与管理平台 – 网易猛犸,正是在网易组织组织结构实践中打磨形成的,不利于为用户画像及后续的业务目标实现提供数据传输、计算和作业流调度等基础能力,有效降低大数据应用的技术门槛。

用户画像(persona)的概念最早由交互设计之父Alan Cooper提出:“Personas are a concrete representation of target users.” 是指真实用户的虚拟代表,是建立在一系列属性数据之上的目标用户模型。随着互联网的发展,现在我门我门 说的用户画像又中含了新的内涵——通常用户画像是根据用户人口学特征、网络浏览内容、网络社交活动和消费行为等信息而抽象出的另另另两个标签化的用户模型。构建用户画像的核心工作,主很久 利用存储在服务器上的海量日志和数据库里的大量数据进行分析和挖掘,给用户贴“标签”,而“标签”是能表示用户某一维度特征的标识。具体的标签形式可不利于够参考下图某网站给其中另另另两个用户打的标签。



用户画像的作用

这么用户画像有那先 作用,能帮助我门我门 达到那先 目标呢?

除了以上较通用的特征,不类事于型的网站提取的用户画像各有侧重点。

用户画像中含的内容并不删剪固定,根据行业和产品的不同所关注的特征都会不同。对于大累积互联网公司,用户画像都会中含人口属性和行为特征。人口属性主要指用户的年龄、性别、所在的省份和城市、教育程度、感情的说说说说情况报告、生育情况报告、工作所在的行业和职业等。行为特征主要中含活跃度、忠诚度等指标。

提取用户画像,前要补救海量的日志,花费大量时间和人力。尽管是这么高成本的事情,大累积公司还是希望能给被委托人的用户做一份足够精准的用户画像。



用户画像的生产

这时只用到了用户的行为特征累积,而人口属性、网购偏好、内容偏好、消费能力和环境特征等日后 上下文还这么利用起来。把以上特征加入到LR模型,一同再去掉 目标商品自身的属性,如文本标签、所属类目、销量等数据,如下图所示,进一步优化训练另另另两个的LR模型。从而最大程度利用可能提取的用户画像数据,做到更精准的个性化推荐。

另外还可不利于够去掉 用户的环境属性,比如当前时间、访问地点LBS特征、当地天气、节假日情况报告等。

原文发布时间为:2018-12-7

本文作者:杨杰

本文来自云栖社区相互相互合作伙伴“数据分析”,了解相关信息可不利于够关注“ecshujufenxi”微信公众号

下面以用户性别为例,具体介绍特征提取的过程:

电商购物网站的用户画像,一般会提取用户的网购兴趣和消费能力等指标。网购兴趣主要指用户在网购时的类目偏好,比如服饰类、箱包类、居家类、母婴类、洗护类、饮食类等。

用户画像涉及到大量的数据补救和特征提取工作,往往前要用到多数据来源,且多人并行补救数据和化成特征。日后,前要另另另两个数据管理系统来对数据统一进行合并存储和分类分类整理。我门我门 的系统以约定的目录特征来组织数据,基本目录层级为:/user_tag/属性/日期/来源_作者/。以性别特征为例,开发者dev1从用户姓名提取的性别数据存放路径为 /user_tag/gender/20170101/name_dev1,开发者dev2从用户填写资料提取的性别数据存放路径为 /user_tag/gender/20170102/raw_dev2。

以内容为主的媒体或阅读类网站,还有搜索引擎或通用导航类网站,往往会提取用户对浏览内容的兴趣特征,比如体育类、娱乐类、美食类、理财类、旅游类、房产类、汽车类等等。

从累积来源提取的数据可信度是不同的,很久 各来源提取的数据前要给出一定的权重,约定一般为0-1之间的另另另两个概率值,另另另两个系统在做数据的自动合并时,只前要做简单的加权求和,并归一化输出到集群,存储到另另另两个定义好的Hive表。接下来很久 数据增量更新到HBase、ES、Spark集群等更多应用服务集群。

用户画像是当前大数据领域的四种 典型应用,也普遍应用在多款网易互联网产品中。本文基于网易的实践,深入浅出地解析了用户画像的原理和化产流程。

用户画像的内容

大体可不利于够能总结为以下十几块 方面: